Gabarito turmas B3, B6, B9, B12, B15 E B18.

1^a Questão:

Importante: não serão aceitas só respostas, portanto todos os equacionamentos para obtenção das respostas devem ser apresentados, além disto, não serão aceitas as respostas sem as unidades.

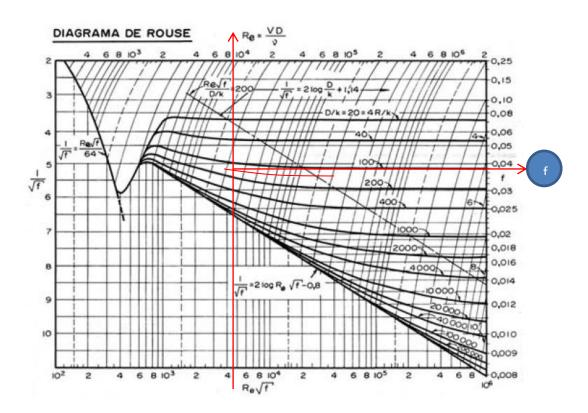
a. estimar a vazão pelo diagrama de Rouse; (valor – 1,0)

Começamos determinando a perda de carga distribuída:

$$h_f = \frac{\Delta p}{\gamma} = h \times \left(\frac{\gamma_{Hg} - \gamma_{H_2O}}{\gamma_{H_2O}} \right)$$

Calculamos então o adimensional $\text{Re}\sqrt{f} = \frac{D}{v} \times \sqrt{\frac{h_f \times D \times 2g}{L}}$

Para utilizarmos o diagrama de Rouse, calculamos: $\frac{D}{K}$



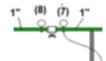
Pelo Rouse, obtemos f e aí podemos determinar a vazão:

$$h_{f} = f \times \frac{L}{D} \times \frac{Q^{2}}{2g \times (A)^{2}}$$

$$Q = \sqrt{\frac{h_{f} \times D \times 2g \times (A)^{2}}{f \times L}} \cong Q \frac{m^{3}}{s}$$

b. o coeficiente de perda de carga singular da válvula gaveta de 1". (valor -0.5)

Aplica-se a equação da energia entre as seções (7) e (8) e evocase a expressão para o cálculo da perda de carga singular:



$$\begin{split} H_7 &= H_7 + h_{S_{V,GA}} \longrightarrow z_7 + \frac{p_7}{\gamma} + \frac{\alpha_7 \times v_7^2}{2g} = z_8 + \frac{p_8}{\gamma} + \frac{\alpha_8 \times v_8^2}{2g} + h_{S_{V,GA}} \\ h_{S_{V,GA}} &= \frac{p_7 - p_8}{\gamma} = \frac{p_7 - p_8}{997,3 \times 9,8} \\ p_7 &= p_{m7} + \gamma \times h_7 \\ p_8 &= p_{m8} + \gamma \times h_8 \\ v &= v_{1''} \\ h_{S_{V,GA}} &= K_{S_{V,GA}} \times \frac{v_{1''}^2}{2g} \therefore K_{S_{V,GA}} = \frac{h_{S_{V,G}} \times 2g}{v_{2''}^2} \end{split}$$

Para a determinação da velocidade média de 1" calculamos a vazão de escoamento e aplicamos a equação da continuidade para o escoamento incompressível e em regime permanente:

$$Q = \frac{\Delta h \times A_{tan \, que}}{t}$$

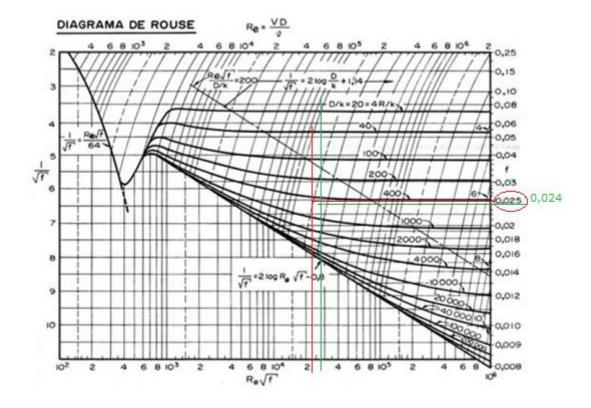
$$v_{1''} = \frac{Q}{A_{1''}} = \frac{Q}{5.57 \times 10^{-4}}$$

Turma			L(m)	h _{dist} (mmHg)	p _{m7}	Unidade p ₇	h ₇ (cm)	p _{m8}	Unidade p ₈	h ₈ (cm)	∆h(mm)	t(s)	Atanque (m²)
3	9	15	2	187	12	psi	23	10	psi	23	100	19,82	0,548
		19	2	171	15	psi	23	12	psi	25	100	20,56	0,548
6	12		1,99	308	55	kPa	8,5	38	kPa	8,5	100	15,87	0,563

T _{fluido} (°C)	ρ _{Η2Ο} (kg/m³)				
24	997,3				
ρ _{нд} (kg/m³)	ν (m²/s)				
13536 9,13E-07					
p _{vapor_abs} (Pa)					
	2983,65				

D_N	D _{int} (mm)	A (cm²)		
1"	26,6	5,57		
1,5"	40,8	13,1		
2"	52,5	21,7		
Kaço (m)	4,60	DE-05		

	Turma		h _f (m)	$\text{Re}\sqrt{\text{f}}$	D _H /K	f _{lido}	Q(m³/s)
3	9	15	2,4	2,3e4	578	0,025	0,00276
		19	2,1	2,2e4	578	0,025	0,00264
6	12		3,9	2,9e4	578	0,024	0,00362



Para o cálculo do coeficiente de perda de carga singular nós especificamos as pressões no SI e para tal recorremos ao CONVERT, onde 1 psi = 6894,757 Pa

			p ₇ (Pa)	p ₈ (Pa)	hs (m)	Q(m³/s)	v _{1"} (m/s)	Ks
3	9	15	84985,0	71195,5	1,4	0,00276	5,0	1,1
		19	105669,3	85180,5	2,1	0,00267	4,8	1,8
6	12		55830,8	38830,8	1,7	0,00355	6,4	0,8

2ª Questão: pede-se especificar o consumo mensal de energia. (valor – 2,0)

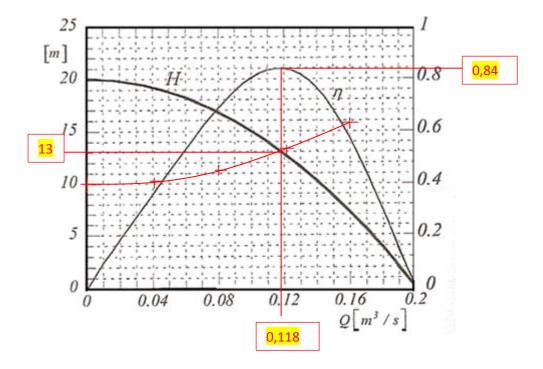
Para executarmos o cálculo solicitado, devemos adotar o seguinte procedimento:

• determinar a equação da CCI:

$$H_{S} = 10 + 222,5 \times Q^{2} \rightarrow [H_{S}] = m e [Q] = \frac{m^{3}}{s} (0,25);$$

• traçar a CCI e obter o ponto de trabalho, para tal devemos calcular a carga que o sistema necessita para se ter o escoamento a uma vazão Q:

Q(m³/s)	0	0,04	0,08	0,12	0,16
H _S (m)	10	10,4	11,4	13,2	15,7



No cruzamento da CCI com a CCB acima, lemos o ponto de trabalho:

$$\begin{split} Q_{\tau} &\cong 0.118 \frac{m^3}{s} \Rightarrow \left(0.25\right) \\ H_{B_{\tau}} &\cong 13m \Rightarrow \left(0.25\right) \\ \eta_{B_{\tau}} &\cong 0.84 \Rightarrow \left(0.25\right) \\ N_{B_{\tau}} &= \frac{997.3 \times 9.8 \times 0.118 \times 13}{0.84} \cong 17848.4W \cong 24.3\text{CV} \Rightarrow \left(0.25\right) \end{split}$$

Calculada a potência nominal da bomba, adotamos um rendimento de 90% para o motor e calculamos a potência de referência do mesmo:

$$N_{m_{ref}}=\frac{N_B}{0.9}=\frac{24.3}{0.9}\cong 27CV$$
, portanto escolhe-se o motor trifásico de 220V igual a 30 CV. (0,25)

Especificado o motor elétrico é possível calcular o consumo mensal da energia:

$$Consumo_{mensal_{energia}} = 30 \times 75 \times 9.8 \times \frac{1}{1000} \times 18 \times 30 = 11907 \frac{\text{kWh}}{\text{mes}} \Longrightarrow (0.5)$$

3ª Questão:

a. verificar a supercavitação (cavitação na entrada da bomba); (valor – 1,0)

Para a verificação do fenômeno de supercavitação devemos calcular a pressão na entrada da bomba e para isso aplicamos a equação da energia entre o nível de captação e a seção de entrada da bomba, a qual iremos considerar sendo a correspondente ao diâmetro de 2":

$$H_0 = H_e + H_{p_{aB}} \implies z_0 + \frac{p_0}{\gamma} + \frac{v_0^2}{2g} = z_e + \frac{p_e}{\gamma} + \frac{\alpha_e \times v_e^2}{2g} + H_{p_{aB}}$$

Adotando-se o PHR no nível de captação, temos:

$$\begin{split} 0 &= 1.1 + \frac{p_e}{996.2 \times 9.8} + \frac{\left(4 \times 10^{-3}\right)^2}{19.6 \times \left(21.7 \times 10^{-4}\right)^2} + H_{p_{aB}} \\ H_{p_{aB}} &= H_{p_{2''}} + H_{p_{1.5''}} \\ H_{p_{aB}} &= 0.0216 \times \frac{\left(1.7 + 15.05\right)}{0.0525} \times \frac{\left(4 \times 10^{-3}\right)^2}{19.6 \times \left(21.7 \times 10^{-4}\right)^2} + 0.0221 \times \frac{0.38}{0.0408} \times \frac{\left(4 \times 10^{-3}\right)^2}{19.6 \times \left(13.1 \times 10^{-4}\right)^2} \\ H_{p_{aB}} &= 1.2 + 0.1 = 1.3m \Rightarrow (0.25) \\ 0 &= 1.1 + \frac{p_e}{996.2 \times 9.8} + \frac{\left(4 \times 10^{-3}\right)^2}{19.6 \times \left(21.7 \times 10^{-4}\right)^2} + 1.3 \Rightarrow p_e = -25123.1 Pa \Rightarrow (0.25) \end{split}$$

Determinada a pressão na seção de entrada da bomba, podemos verificar a existência, ou não, da supercavitação, lembrando que a condição para a mesma não ocorrer é: $p_{e_{abs}} > p_{vapor}$.

Considerando a transformação da unidade pelo CONVERT, temos:

$$p_{atm} = 702mmH = 93592,3Pa$$

 $p_{e_{abs}} = -25123,1 + 93592,3 = 68469,2Pa$

Portanto não ocorre a supercavitação. (0,50)

b. verificar a cavitação através do NPSH. (valor – 0,5)

Calculamos o NPSH_{disponível} e o NPSH_{requerido}:

$$\begin{split} \text{NPSH}_{disp} &= z_0 + \frac{p_{0_{abs}} - p_{vapor}}{\gamma} - H_{p_{aB}} \\ \text{NPSH}_{disp} &= -1.1 + \frac{93592.3 - 3779.6}{996.2 \times 9.8} - 1.3 \\ \text{NPSH}_{disp} &\cong 6.8\text{m} \Rightarrow (0.25) \\ \text{NPSH}_{req} &= H_{e_{abs}} - \frac{p_{vapor}}{\gamma} \\ \text{NPSH}_{req} &= \frac{68469.2}{996.2 \times 9.8} + \frac{\left(4 \times 10^{-3}\right)^2}{19.6 \times \left(21.7 \times 10^{-4}\right)^2} - \frac{3779.6}{996.2 \times 9.8} \cong 6.8\text{m} \Rightarrow (0.25) \end{split}$$

Aqui não existe e nem poderia existir a reserva contra a cavitação, isto porque não daria para se ter NPSH_{disponível} diferente do NPSH_{requerido}.

Observação: o NPSH_{requerido} deveria ser calculado pelo fator de Thoma!