
Gabarito turmas B1, B4, B7, B10, B13, B16 E B19.

1^a Questão:

Importante: não serão aceitas só respostas, portanto todos os equacionamentos para obtenção das respostas devem ser apresentados, além disto, não serão aceitas as respostas sem as unidades.

✓ a carga manométrica da bomba para a rotação de 3500 (rpm); (valor – 0,5)

Aplicamos a equação da energia entre as seções (1) e (2) e neste caso não há diferenças entre as bancadas impares e pares:

$$\begin{split} H_1 + H_{B_{n_-exp}} &= H2 \\ z_1 + \frac{p_1}{\gamma} + \frac{\alpha_1 \times v_1^2}{2g} + H_{B_{n_-exp}} &= z_2 + \frac{p_2}{\gamma} + \frac{\alpha_2 \times v_2^2}{2g} \\ H_{B_{n_-exp}} &= \left(z_2 - z_1\right) + \frac{\left(p_2 - p_1\right)}{\gamma} + \frac{\left(\alpha_2 \times v_2^2 - \alpha_1 \times v_1^2\right)}{2g} \end{split}$$

 (z_2-z_1) \Rightarrow deve ser adotado por cada um e pode ser o valor utilizado nesta exp.

$$p_2 = p_{m2} + \gamma \times h_2$$

$$p_1 = p_{m1} + \gamma \times h_1$$

$$Q = \frac{\Delta h \times A_{tan \, que}}{t}$$

$$v_1 = \frac{Q}{A_1} = \frac{Q}{13.1 \times 10^{-4}} \Rightarrow Re_1 = \frac{v_1 \times D_1}{v} = \frac{v_1 \times 40.8 \times 10^{-3}}{9.13 \times 10^{-7}} \Rightarrow \alpha_1 = 1 \, \text{se for turbulento}$$

$$v_2 = \frac{Q}{A_2} = \frac{Q}{5.57 \times 10^{-4}} \Rightarrow \text{Re}_2 = \frac{v_2 \times D_2}{v} = \frac{v_2 \times 26.6 \times 10^{-3}}{9.13 \times 10^{-7}} \Rightarrow \alpha_2 = 1 \text{ se for turbulento}$$

Os cálculos foram feitos em uma planilha Excel como mostrado na próxima página, onde adotamos Δz como mostrado na tabela a seguir.

	Tabela de Dados														
	Τι	ırma		p_{m1} (mmHg) h_1 (cm) p_{m2} (kPa) h_2 (cm)		n (rpm)	p _{m3} (psi)	h ₃ (cm)	p _{m4} (psi)	h ₄ (cm)	ΔZ (cm)				
1	7	13		-150	11,5	190	9	3455	21	24	17	24	23,5	∆z ao lado foi adotado	
4	10	16		-170	11,5	150	0	3449	17	23,5	14	23,5	23		
			19	-180	13,5	200	0	3444	24	24	19	24	23		
	Turma				DN	D _{int} (mm)	A(cm²)			Δh(mm)	t(s)	A _{tanque} (m ²)	T _{fluido} (°C)	ρ _{H2O} (kg/m³)	
1	7	13			1"	26,6	5,57			100	21,3	0,547	24	997,3	
4	10	16			1,5"	40,8	13,1			100	23,49	0,549	p _{vapor_abs} (Pa)	v (m²/s)	
	19						100	20,56	0,548	2983,65	9,13E-07				

	Turma		p ₁ (Pa)	p ₂ (Pa)	Q(m³/s)	v ₁ (m/s)	v ₂ (m/s)	Re ₁	α_1	Re ₂	α_{2}	H _{Bn} (m)	H _{Bn} (m)	NPSH _{req} (m)	
[1 7	13		-18868,0	190879,62	0,00257	2,0	4,6	87604	1	134327	1	22,6	23,2	7,5
4	1 10	16		-21533,6	150000	0,00234	1,8	4,2	79727	1	122249	1	18,5	19,1	7,2
			19	-22671,0	200000	0,00267	2,0	4,8	90923	1	139416	1	24,0	24,8	7,1
														(a)	(b)

[✓] calcular o NPSH_{requerido}; (valor – 0,5)

O resultado está apresentado na tabela anterior, já que: $NPSH_{requerido} = H_{e_{abs}} - \frac{p_{vapor}}{\gamma} = 0 + \frac{(p_1 + p_{atm}) - p_{vapor}}{\gamma} + \frac{\alpha_1 \times v_1^2}{2g}$, isto porque o

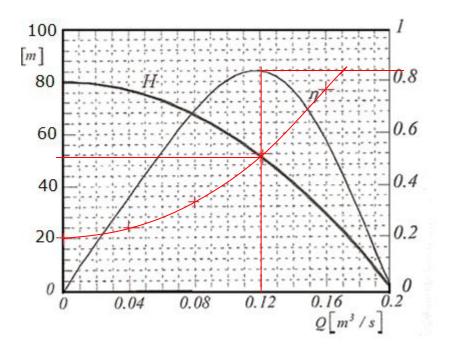
PHR é adotado no eixo da bomba. A leitura barométrica foi dada e igual a 700mmHg = $0.7 \times 13536 \times 9.8 \cong 92857$ Pa, aqui é importante utilizar o peso específico do mercúrio para a temperatura dada, pois no barômetro se tem a coluna do mercúrio o que implica que a mesma sofre influência da temperatura local.

✓ o coeficiente de perda de carga singular da válvula globo de 1,5". (valor – 0,5) Aplica-se a equação da energia entre as seções (3) e (4):

$$\begin{split} H_3 &= H_4 + h_{S_{V,G}} \longrightarrow z_3 + \frac{p_3}{\gamma} + \frac{\alpha_3 \times v_3^2}{2g} = z_4 + \frac{p_4}{\gamma} + \frac{\alpha_4 \times v_4^2}{2g} + h_{S_{V,G}} \\ h_{S_{V,G}} &= \frac{p_3 - p_4}{\gamma} = \frac{p_3 - p_4}{997,3 \times 9,8} \\ p_4 &= p_{m4} + \gamma \times h_4 \\ p_3 &= p_{m3} + \gamma \times h_3 \\ v &= v_{1,5"} \\ h_{S_{V,G}} &= K_{S_{V,G}} \times \frac{v_{1,5"}^2}{2g} \therefore K_{S_{V,G}} = \frac{h_{S_{V,G}} \times 2g}{v_{1,5"}^2} \end{split}$$

Como as pressões lidas nas seções (3) e (4) estão em psi, vamos efetuar a transformação pelo **convert**, onde temos que 1psi = 6894,757Pa

	Т	urma		p ₄ (Pa)	р ₃ (Ра)	h _s (m)	v _{1,5"} (m/s)	K _s
1	7	13		119556,5	147135,5	2,8	2,0	14,4
4	10	16		98823,4	119507,7	2,1	1,8	13,0
			19	133346,0	167819,8	3,5	2,0	16,7
								С


2^a Questão:

Pede-se especificar o consumo mensal de energia. (valor - 2,0)

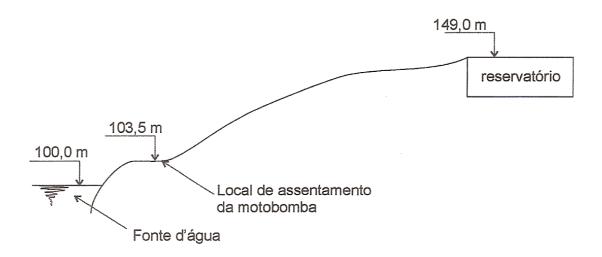
Para executarmos o cálculo solicitado, devemos adotar o seguinte procedimento:

- ✓ determinar a equação da CCI: $H_S = 20 + 2222,2 \times Q^2 \rightarrow [H_S] = me[Q] = \frac{m^3}{s}$
- ✓ traçar a CCI e obter o ponto de trabalho, para tal devemos calcular a carga que o sistema necessita para se ter o escoamento a uma vazão Q:

Q(m³/s)	0	0,04	0,08	0,12	0,16
H _S (m)	20	23,6	34,2	52	76,9

No cruzamento da CCI com a CCB acima, lemos o ponto de trabalho:

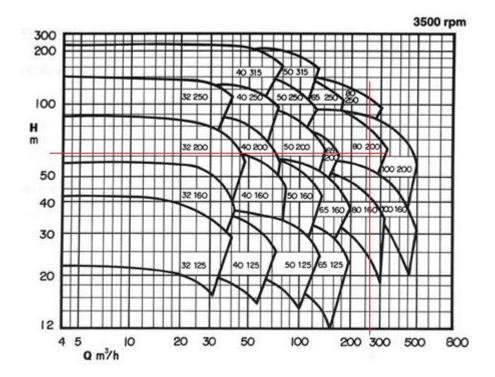
$$\begin{split} &Q_{\tau}\cong 0.12\frac{m^3}{s} \Rightarrow \left(0.25\right)\\ &H_{B_{\tau}}\cong 51.9m \Rightarrow \left(0.25\right)\\ &\eta_{B_{\tau}}\cong 0.84 \Rightarrow (0.25)\\ &N_{B_{\tau}}=\frac{997.3\times 9.8\times 0.12\times 51.9}{0.84}\cong 72463.8W\cong 98.6CV \Rightarrow \left(0.25\right) \end{split}$$


Calculada a potência nominal da bomba, adotamos um rendimento de 90% para o motor e calculamos a potência de referência do mesmo:

$$N_{m_{ref}} = \frac{N_B}{0.9} = \frac{98.6}{0.9} \cong 110\text{CV}$$
, portanto escolhe-se o motor trifásico de 220V igual a 125CV. (0,25)

Especificado o motor elétrico é possível calcular o consumo mensal da energia:

$$Consumo_{mensal_{energia}} = 125 \times 75 \times 9.8 \times \frac{1}{1000} \times 12 \times 30 = 33075 \frac{\text{kWh}}{\text{mes}} \Longrightarrow (0.5)$$


3ª Questão: Para a instalação de bombeamento de água a 24 ºC, trabalhando com o fator de segurança mínimo.

a. especificar a bomba de 3500 rpm; (valor -1,0)

Escrevemos a equação da CCI:

$$\begin{split} H_{S} &= 49 + 0.0159 \times \frac{82}{0.2545} \times \frac{Q^{2}}{19.6 \times \left(509.1 \times 10^{-4}\right)^{2}} + 0.0157 \times \frac{1023.2}{0.2027} \times \frac{Q^{2}}{19.6 \times \left(322.6 \times 10^{-4}\right)^{2}} \\ H_{S} &= 49 + 100.9 \times Q^{2} + 3885.3 \times Q^{2} \therefore H_{S} = 49 + 3986.2 \times Q^{2} \Rightarrow \left(0.25\right) \\ Q_{projeto} &= 1.1 \times 240 = 264 \frac{m^{3}}{h} \Rightarrow \left((0.25)\right) \\ H_{B_{projeto}} &= 49 + 3986.2 \times \left(\frac{264}{3600}\right)^{2} \cong 70.5 \text{m} \Rightarrow \left(0.25\right) \end{split}$$

Portanto, a bomba escolhida é a 80-200 (0,25)

b. calcular o $NPSH_{disponível}$ para a vazão de projeto. (valor -0.5)

Apresentamos a soulução deste item para a leitura barométrica de 700 mmHg:

$$NPSH_{disp} = -3.5 + \frac{0.7 \times 13600 \times 9.8 - 2983.65}{997.3 \times 9.8} - 0.0159 \times \frac{82}{0.2545} \times \frac{\left(264 \frac{1}{3600}\right)^2}{19.6 \times \left(0.05091\right)^2}$$

$$NPSH_{disp} \approx 5.198..m \approx 5.1m \Rightarrow (0.5)$$