Exercícios

1) Duas bombas iguais estão associadas em série para o bombeamento d'água a 30° C (ρ = 996 kg/m³ e p_{vapor_abs} = 0,0429 kgf/cm²). Sendo dados:

$$H_B = 54 - 0.0250 \times Q^2$$

 $\eta_B = -0.0870 \times Q^2 + 4.5 \times Q$

a. CCB da bomba: $NPSH_{req} = 7.5 - 0.00250 \times Q^2$

$$[Q] = \frac{m^3}{h}; [H_B] = [NPSH_{req}] = m; [\eta_B] = \%$$

- b. CCI da instalação operando com as bombas associadas em série $H_S = 65 + 0,\!0300 \times Q^2 \,.$
- a. Pede-se o ponto de trabalho ($Q_{\tau}; H_{B_{\tau}}; \eta_{B_{\tau}}; N_{B_{\tau}}$) da associação e de cada bomba na associação.
- b. Sabendo que para a situação de operação do item a) a perda de carga na tubulação antes da primeira bomba é dada por $H_{p_{aB1}} = 6 \times 10^{-3} \times Q^2 \Rightarrow \left[H_{p_{aB1}}\right] = m; \left[Q\right] = \frac{m^3}{h}, \text{que ela está instalada a}$ 3,2 m acima do nível de captação que está submetido a pressão barométrica igual a 93200 Pa, pede-se verificar a existência, ou não do fenômeno de cavitação.

<u>Solução</u>

a. O ponto de trabalho ocorre no cruzamento da CCI com a CCB, no caso da associação em série das bombas, temos:

$$2 \times \left(54 - 0.0250 \times Q_{as_{\tau}}^{2}\right) = 65 + 0.0300 \times Q_{as_{\tau}}^{2}$$

$$108 - 0.05 \times Q_{as_{\tau}}^{2} = 65 + 0.0300 \times Q_{as_{\tau}}^{2}$$

$$0.08 \times Q_{as_{\tau}}^{2} = 43 \therefore Q_{as_{\tau}} = \sqrt{\frac{43}{0.08}} \cong 23.2 \frac{m^{3}}{h} \Rightarrow (0.75)$$

$$H_{B_{as_{\tau}}} = 108 - 0.05 \times 23.2^{2} \cong 81.1 m \Rightarrow (0.50)$$

Como é a associação em série de duas bombas iguais, temos que o rendimento da associação e das bombas na associação é o mesmo, portanto:

$$\eta_{B_{as_{\tau}}} = \eta_{B} = -0.087 \times 23.2^{2} + 4.5 \times 23.2 \cong 57.6\% \implies 0.75$$

A vazão das bombas na associação é a mesma, portanto no ponto de trabalho igual a 23,2 m³/h (0,25), já a carga manométrica seria a metade, isto porque:

$$H_{B_{ac}} = H_B + H_B = 2 \times H_B \implies bombas iguais$$

$$H_{B} = \frac{81,1}{2} \cong 40,55 \text{m} \Longrightarrow (0,5)$$

Para o cálculo da potência da associação, temos:

$$N_{B} = \frac{\gamma \times Q \times H_{B}}{\eta_{B}} = \frac{996 \times 9.8 \times (23.2/3600) \times 40.55}{0.576} \cong 4428.3W \Rightarrow (0.5)$$

$$N_{B_{av}} = 2 \times N_{B} \cong 8856.6W \Rightarrow (0.25)$$

b. Para se verificar o fenômeno de cavitação, devemos calcular o NPSH_{disponível} e este deve ser maior que o NPSH_{requerido} isto para existir uma reserva contra a cavitação.

NPSH_d =
$$z_i + \frac{p_{i_{abs}} - p_{vapor}}{\gamma} - H_{p_{aB}}$$

NPSH_d = $-3.2 + \frac{93200 - 0.0429 \times 10^4 \times 9.8}{996 \times 9.8} - 6 \times 10^{-3} \times 23.2^2 \cong 2.6 \text{m} \Rightarrow (1.5)$
NPSH_d - NPSH_r = $2.6 - (7.5 - 0.00250 \times 23.2^2) \cong -3.6 \text{m} \Rightarrow (1.0)$
∴ está cavitando ⇒ (1.0)

- 2) Duas bombas iguais (figura 16.12) são instaladas em série, em um sistema no qual há uma diferença de nível de 60 m. Sabendo-se que os níveis de captação e distribuição encontram-se abertos à pressão atmosférica e que para uma vazão de 180 m³/h a carga do sistema é igual a 108,6 m, pede-se:
 - a. a vazão e a carga manométrica da associação em série das bombas;
 - b. a vazão e a carga manométrica de cada bomba na associação;
 - c. a vazão e a carga manométrica de uma bomba funcionando isoladamente.

Observações: considere o coeficiente de perda de carga distribuída invariável com a vazão, considere desprezível a variação da equação da CCI para o funcionamento da associação de bombas e o funcionamento isolado de uma única bomba.



Figura 16.12 - Curva de desempenho da bomba KSB Etanorm 100-400.

Solução

a.
$$\begin{aligned} H_S &= H_{est} + B_{inst} \times Q^2 \\ H_{est} &= 60 \text{m} \therefore H_S = 60 + B_{inst} \times Q^2 \end{aligned}$$

Para a vazão de 180m³/h a carga do sistema é igual a 108,6m,

portanto:
$$108,6 = 60 + B_{inst} \times 180^2 \Rightarrow B_{inst} \cong 1,5 \times 10^{-3} \frac{h^2}{m^5} \Rightarrow (1,0)$$
 e aí

temos a equação da CCI: $H_S = 60 + 1.5 \times 10^{-3} \times Q^2$.

Para a associação em série das bombas e como elas são iguais, temos:

Q(m³/h)	0	40	80	120	160	200	240	280
H _s (m)	60	62,4	69,6	81,6	98,4	120	146,4	177,6

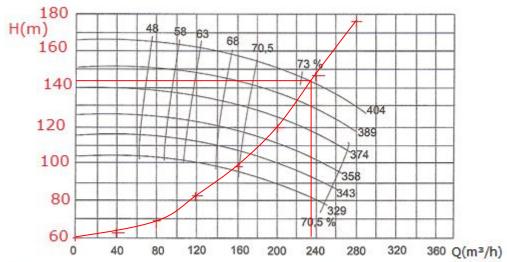


Figura 16.12 - Curva de desempenho da bomba KSB Etanorm 100-400.

A vazão de trabalho pode ser lida no gráfico e seria aproximadamente 237 m³/h e aí podemos determinar a carga manométrica pela equação da CCI, isto porque no ponto de trabalho, temos: $H_S = H_{Bas}$, portanto:

$$H_{B_{as}} = 60 + 1.5 \times 10^{-3} \times 237^2 = 144.3 \text{m}.$$

Outra maneira de se determinar o ponto de trabalho, seria obtendo a equação da CCB ($H_{B_{as}}=A\times Q^2+B\times Q+C$) e aí temos:

- 1. para Q=0 m³/h temos H_{Bas} = 176 m, portanto: C= 176 m;
- 2. para Q=130 m 3 /h temos H_{Bas} = 160 m, portanto:

$$160 = A \times 130^{2} + B \times 130 + 176 \Rightarrow -16 = A \times 130^{2} + B \times 130$$
$$\frac{-16}{130} = A \times 130 + B \therefore B = -0.1231 - 130 \times A$$

3. para Q=200 m³/h temos $H_{Bas} = 150$ m, portanto:

$$\begin{split} 150 &= A \times 200^2 + B \times 200 + 176 \Longrightarrow -26 = A \times 200^2 + \left(-0.1231 - 130 \times A\right) \times 200 \\ &-1.38 = A \times 14000 \therefore A \cong -9.86 \times 10^{-5} \, \frac{h^2}{m^5} \Longrightarrow B = -01231 - 130 \times -9.86 \times 10^{-5} \\ B &\cong -0.1103 \, \frac{h}{m^2} \Longrightarrow H_{B_{as}} = -9.86 \times 10^{-5} \times Q^2 - 0.1103 \times Q + 176 \end{split}$$

No ponto de trabalho temos $H_S = H_{Bas}$:

$$\begin{aligned} &60+1.5\times 10^{-3}\times Q^2 = -9.86\times 10^{-5}\times Q^2 - 0.1103\times Q + 176\\ &1.5986\times 10^{-3}\times Q^2 + 0.1103\times Q - 116 = 0\\ &Q_{\tau} = \frac{-0.1103+\sqrt{0.1103^2+4\times 1.5986\times 10^{-3}\times 116}}{2\times 1.5986\times 10^{-3}} \cong 237.1\frac{m^3}{h} \Rightarrow (1.0)\\ &H_{B_{as}} = 60+1.5\times 10^{-3}\times 237^2 = 144.3m \Rightarrow (1.0) \end{aligned}$$

 b. Cada bomba na associação opera com a mesma vazão, portanto 237,1 m³/h e com a carga manométrica pela metade, ou seja:

$$H_{B} = \frac{H_{B_{as}}}{2} = \frac{144,3}{2} \cong 72,15m \Longrightarrow (1,0)$$

 c. Como a CCI não muda para o funcionamento de uma só bomba, temos:

Q(m³/h)	0	40	80	120	160
H _S (m)	60	62,4	69,6	81,6	98,4

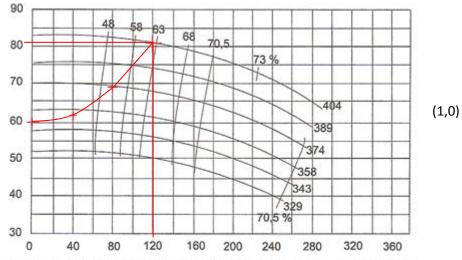


Figura 16.12 - Curva de desempenho da bomba KSB Etanorm 100-400.

A vazão de trabalho pode ser lida no gráfico e seria 120 m³/h e como esta vazão está na tabela fica fácil a determinação da carga manométrica que seria 81,6 m. (2,0)