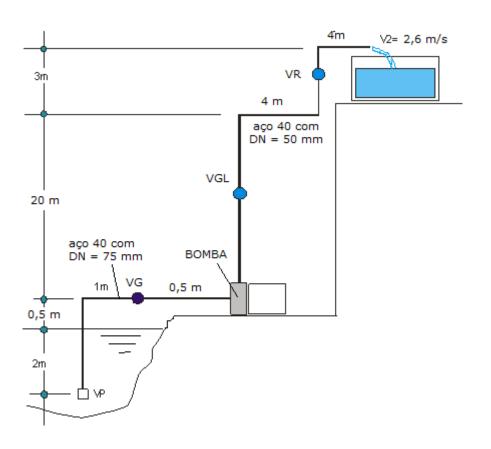

- 1ª Questão (valor 2,0) Em um pequeno edifício, uma bomba é utilizada para recalcar água de um reservatório subterrâneo para uma caixa d'agua situada no topo do edifício. A vazão desejada de água é 3,9 litros/s. Considerando que o escoamento da água ocorre em regime permanente, pede-se:
- a) dimensionar a tubulação de sucção e recalque;
- b) selecionar a bomba especificando aproximadamente o seu ponto de trabalho.

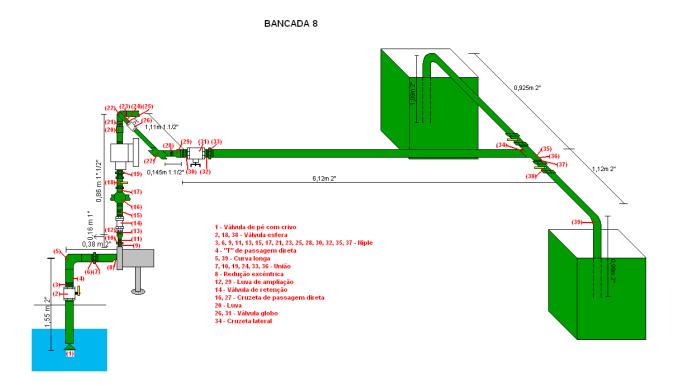
Dados:


- reservatório subterrâneo tem grandes dimensões e está aberto para a atmosfera;
- na sucção existem as seguintes singularidades: válvula de pé com crivo; curva de 90°; válvula gaveta da mipel e uma redução excêntrica (K_S = 0,8);
- no recalque existem as seguintes singularidades: ampliação concêntrica ($K_S = 1,2$), válvula de retenção vertical da mipel, válvula globo da mipel, curva de 90° e saída de canalização;
- considerar a água a 20^oC;
- comprimento da tubulação antes da bomba igual a 5,2 m;
- comprimento da tubulação após a bomba igual 39,5 m

- 2ª Questão (valor 2,0) Calcular a potência da bomba para elevação da água até o reservatório superior. Considere a velocidade do fluido no ponto 2 como sendo 2,6 m/s. Para definirmos as perdas de carga, considere que as curvas e válvulas acrescentam um comprimento equivalente de trecho reto da seguinte forma:
 - na sucção, para o diâmetro nominal da tubulação de 75mm tem-se os seguintes acréscimos de comprimento equivalente:
 - 1- válvula de pé com crivo, ou válvula de poço
 - 2- joelho de 90°
 - 3- válvula gaveta totalmente aberta
 - 4- comprimento da tubulação = 4m

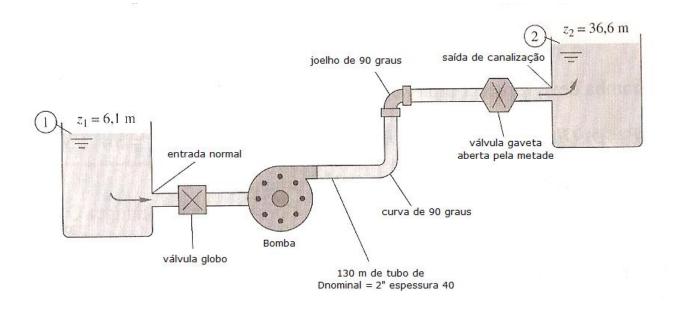
Para o recalque (depois da bomba) onde o diâmetro nominal da tubulação é de 50mm tem-se as seguintes singularidades:

- 1- 3 curvas de 90⁰
- 2- válvula globo sem guia
- 3- válvula de retenção vertical
- 4- saída de canalização;
- 5- trecho reto igual a 31m



- 3ª Questão (valor 1,0) Considerando que um tanque que armazena gás liquefeito de petróleo (GLP) em estados líquido e gasoso possua um manômetro que registra a pressão manométrica, julgue os seguintes itens.
 - 1. A pressão absoluta no tanque é dada pela soma das pressões manométrica e atmosférica.
 - 2. A pressão absoluta no tanque é, em geral, inferior à da atmosférica, caracterizando uma pressão vacuométrica.
 - 3. Se o manômetro for instalado na posição inferior do tanque, ele deverá medir uma pressão equivalente à altura de gás liquefeito dada por $\rho \times g \times H$, em que, ρ é a massa específica, g, a aceleração da gravidade, e H, a altura de fluido no tanque.
 - 4. A pressão nas paredes do tanque somente será distribuída uniformemente se o tanque armazenar GLP em fase gasosa

- 4ª Questão (valor 1,0) Considerando que um fluido viscoso escoa em uma tubulação com comprimento, diâmetro e a uma vazão conhecidos, julgue os itens subsequentes.
 - A perda de carga nessa tubulação pode ser corretamente estimada a partir do diagrama de Moody, que relaciona um fator adimensional de atrito com o número de Reynolds do escoamento e a rugosidade relativa da tubulação.
 - 2. Se o diâmetro da tubulação aumentar, a perda de carga também deve aumentar.
 - 3. Se a vazão do escoamento diminuir, a perda de carga também deve diminuir.
 - 4. Se existir uma singularidade relacionada à mudança de área transversal (redução ou ampliação) sempre será considerada na tubulação de maior diâmetro.


5ª Questão (valor 2,0) – Sabendo que a instalação a seguir opera com uma vazão de 2,6 L/s, pede-se:

- a. estimar a pressão na entrada da bomba na escala absoluta;
- b. o NPSH_{disp} em "m";
- c. Verificar o fenômeno de supercavitação e o fenômeno de cavitação, sabendo que o $NPSH_{req}$ para a vazão dada é 2,1 m.

Importante: considere que a leitura barométrica seja igual a 690 mmHg, que a temperatura da água seja 30^oC e que a cota da seção de entrada da bomba, considerando o PHR de referência no nível d'água é 1,35 m.

6ª Questão (valor 2,0) - Água a 22ºC é bombeada entre os dois reservatórios a uma vazão de 4,6 L/s, por um tubo de aço de espessura 40 com 130 m de comprimento e diâmetro nominal de 2" e diversas singularidades, que são mencionadas na própria figura. Sabendo que a instalação é considerada nova, pede-se estimar a potência nominal da bomba.

Dados:

Singularidade	Coeficiente de perda de carga singular
Entrada normal	0,7
Válvula globo	7,5
Curva de 90 graus	0,25
Joelho de 90 graus	1,05
Válvula gaveta aberta pela metade	3,9
Saída de canalização	1,0